Benefits of schedule switch from 3+0 to 2+1 for 13vPCV in Australian children

Chris Blyth¹

Sanjay Jayasinghe², Clayton Chiu², Peter McIntyre²

¹University of WA, Telethon Kids Institute & Princess Margaret Hospital

²National Centre for Immunisation Research and Surveillance & University of Sydney

Background

- "3p+0" schedule (doses at 2,4 and 6 months, no booster) introduced in 2005 when 7vPCV was included on the NIP
- "3p+0" continued when 13vPCV replaced 7vPCV in 2011 Decision based on experience with 7vPCV providing adequate protection in infancy
- Increase in 13vPCV vaccine failures from 2013 in children > 12 months of age triggered exploration of a booster dose
- Comparing "3p+0" with other schedules, it was noted Lower rates of VFs are being observed with alternative schedules which include a 2nd year of life booster
 - Greater reductions in disease in un-vaccinated individuals (herd effects) are observed with alternative schedules with 2nd year of life booster
- ATAGI recommended moving 3rd dose to age 12 months
 - NHMRC endorsed post public consultation in Sep 2017
 - PBAC positive recommendation in April 2018

Results - Breakthrough cases

Schedule	Age <12 months		Age ≥12 months		Total	
	Severe IPD [†]					
AUS (observed, 3+0 schedule)	1	7	24	101	25	108
UK (observed, 2+1 schedule)	19	41	18	28	37	69
AUS (imputed, 2+1 schedule!)	8	18	8	12	16	30

Rate of breakthrough IPD in children

≥12 months of age
• 3.4 cases/10⁶ in Australia
• 0.7 cases/10⁶ in UK

Total numbers over the first 4 years of the program presented

Key assumption: differential 13vPCV effect attributable to schedule

Includes pneumococcal meningitis and pneumonia with empyemaleffusion
'Crude extrapolation to estimate number expected if 2+1 schedule was used instead of 3+0 schedule
in this period by accounting for the difference in birth cohort sizes of 700,000 in the UK and 300,000
in Australia [1-75], rounded to newsets whole number

Results - Breakthrough cases

				_		
Schedule	Age <12 months		Age ≥12 months		Total	
AUS (observed, 3+0 schedule)	1	7	24	101	25	108
UK (observed, 2+1 schedule)	19	41	18	28	37	69
AUS (imputed, 2+1 schedule [†])	8	18	8	12	16	30
AUS (difference between imputed and	+7	+11	-16	-89	-9	-78
observed)						

Rate of breakthrough IPD in children ≥12 months of age • 3.4 cases/106 in Australia • 0.7 cases/106 in UK

Total numbers over the first 4 years of the program presented

Cases that could have been averted in four

years of 13vPCV if 2+1 was used
• 89 in children aged ≥12 months
• may have been offset by 11 more

cases in age 6-12 months (~3/ Yr)
• Nett cases averted 78

Includes pneumococcal meningitis and pneumonia with empyema|effusion
'Crude extrapolation to estimate number expected if 2+1 schedule was used instead of 3+0 schedule
in this period by accounting for the difference in birth cohort sizes of 700,000 in the UK and 300,000
in Australia [n-27]. Counded to nearest whole number

Results - Population impact

Age group (years)	Cases averted if 2+1 used			
< 2 years	-23			
2-4 years	-49			
5-14 years	-28			
15-44 years	-50			
45-64	-65			
65+	-53			
Age adjusted total	-268			

Any residual disease (including that in

- IRR for 13v serotypes for the 5 years post 13vPCV substantially higher in UK than Australia
- Had the 2+1 schedule been used in Australia a total of ~270 fewer cases of 13vPCV serotype IPD would have been observed in fifth post-13vPCV introduction year

Key assumption: differential 13vPCV effect attributable to schedule

Conclusion

- Substantial reductions in vaccine type IPD across all age groups with 13vPCV using a 3p+0 schedule has been observed
- Unlike 7vPCV 3p+0 which appeared comparable to booster dose schedules (2p+1), 13vPCV 3p+0 appears inferior
 - · ? VE waning
 - · ? Less impact on carriage
- 2p+1 schedule likely result in less breakthrough & greater herd benefit
- Potential small increase in 2 dose VFs between 6-12 months age likely to be only transient
- No change to 4 dose (3p+1) 13vPCV schedule in at risk groups
- . Including Indigenous children in NT, QLD, SA & WA
- Post schedule change essential to
 Carefully monitor IPD incidence in routine surveillance
 - · Undertake comprehensive evaluation at pre-determined time point to ensure expected benefits