VACCINATION IN PREGNANCY: **RSV VACCINES** ARE WE THERE YET?

Flor M Munoz M D Associate Professor Pediatrics and Molecular Virology and Microbiology Baylor College of Medicine Texas Children's Hospital Houston, Texas

Disclosures

- · Research Funding
- National Institutes of Health US
 Centers for Disease Control and Prevention

- Abt
 Novavax
- Chimerix
- Ansun Biocryst
- Alios
- Regeneron
- GAIA Brighton Collaboration National Vaccine Program Office
- Bill and Melinda Gates Foundation
- DSMB Member
- NIH BioCSL Seqirus Moderna
- Thrasher PROPEL study
- · Advisory role Novavax GSK

Objectives

- · RSV epidemiology and burden of disease in infants and pregnant women
- · Rationale for maternal immunization with RSV vaccine
- · Goals and challenges in the development of RSV vaccines for administration during pregnancy to protect young infants.

Respiratory Syncytial Virus

- Neg sense, ssRNA Paramyxovirus Two main types A, B co-circulate 11 proteins, of which 2 are NS

- F (fusion viral penetration, spread) and G (attachment) surface glycoproteins induce Neutralizing Antibodies

Peribronchiolar and interstitial lymphocytic infiltrates with airway trapping (Bronchiolitis)

Features of Respiratory Syncytial Virus

- · Mucosally restricted pathogen in the immunocompetent host
- · Causes LRTI -Bronchiolitis
- · Co-circulation of subgroups (A and B) during winter outbreaks
- Illness burden and disease severity is greatest in infants, young children and elderly adults
- Recurrent infections occur throughout life and are milder except for people with chronic medical conditions
- Virus-specific serum neutralizing antibody (infection-induced, maternally derived or passively administered) protects against severe RSV LRTI

Impact of RSV Disease in Children

- · Most important cause of LRTI in infants and young children
- Nearly all children are infected at least once by age 2
- · Recurrent infections common
- · 30% to 40% of primary infections result in LRTI
- · 2-3% of infected children require hospitalization one of the most important causes of hospitalization in US and other HIC
- · Higher mortality than influenza in infants
- · Associated with chronic reactive airways/asthma in the long term

RSV Infection Rate in Children Less Than Five Years of Age by Treatment Site in U.S.

	Infection rate per 1000 children (95% CI)				
Treatment Site	0-5 months	6-11 months	12-23 months	24-59 months	
Hospital	16.9	5.1	2.7	0.4	
	(15.3-18.5)	(4.6-5.5)	(2.3-2.7)	(0.3-0.4)	
Emergency department	55	57	32	13	
	(24-126)	(20-161)	(11-92)	(4-41)	
Pediatric practice	132	177	66	57	
	(46-383)	(61-511)	(18-245)	(19-167)	

CB Hall et al., NEJM 2009;360:588

All Cause Mortality Associated With Respiratory Syncytial Virus and Influenza: 1989-1999

virus and ini				
Incidence per 100,000 person- years				
Age , Y	RSV	Flu		
<1	5.4	2.2		
1-4	0.9	1.1		
5-49	2.6	1.5		

WW Thompson et al. NEJM 2003;289:179-86.

Incidence per 100,000 person- years				
Age , Y	RSV	Flu		
<1	8.4	6.7		
1-4	0.9	0.8		
5-14	0.15	0.3		

DM Fleming et al. J Epidemiol Community Health. 2005;59:586-90.

Global Burden of RSV Disease In Children Under 5 Years Of Age

Mortality estimates suggest RSV is an important cause of death in children after pneumococcal pneumonia and Haemophilus influenzae type b.

- RSV is a major global pathogen
- 33.8 (19.3-46.2) million cases annually of RSV-ALRI
- 3.4 (2.8-4.3) million cases annually of severe RSV-ALRI
- 60,000 to 199,000 deaths annually attributed to RSV
 - Most of the deaths in developing countries occur in young children

Nair H, et al., Lancet 2010;375:1545-55.

Very young infants are most at risk for RSV-related death

- · Case series hospital data from 23 countries
- · Median age for RSVrelated deaths in LMICs is 5 months, with more than 40% occurring in under 3 months
- · RSV deaths from community higher

ema NM et al. Lancet Glob Health 2017

RSV in infancy and subsequent asthma

- Retrospective cohort analysis using linked population-based administrative data in New South Wales, Australia.
- Primary outcome measure: Risk of development of severe asthma in different subgroups of children who had RSV hospitalization in the first 2 years of life compared with those who did not.
- Cohort: 847,516 children born between 2000 and 2010.
- · 3 subgroups:
- (1) non-Indigenous high-risk children (preterm or low birth weight);
- (2) Indigenous children (Aboriginal and/or Torres Strait Islander)
- (3) non-Indigenous standard risk children: all other non-Indigenous term children.

· Results:

- Asthma hospitalization beyond age 2 yr 7.5% in children with RSV prior hospitalization vs. 2% in those without RSV
- High risk for asthma hospitalization persisted up to 7 years of age in children with history of severe RSV in all groups (HR 3-4)

Homaira N, et al. BMJ Open 2017

RSV in Children **Current Prevention Strategies**

- No licensed vaccine for children or adults
- Passive Antibody
 RSV-Specific IgG (RSV-IG or Respigam®)
- Monoclonal antibody (Palivizumab or Synagis®)

 Licensed 1998 US

 Effective: Reduces mortality and severity of RSV disease
- Restricted to:
- Preterm infants < 29 weeks of gestation

 Preterm infants with chronic lung disease (O2 requirement > 28 days)

 Infants with hemodynamically significant/cyanotic congenital heart disease
- Requires monthly IM administration
- · Most infants who are at risk for RSV are excluded (term)

	body Titer			
No RSV RSV disease disease		Assay Method	Article	
652.6	198.1	Membrane Fluores- cent Antibody Test	Ogilvie, J Med Vir 1981 7:26: Maternal Ab & RSV	
92	9.5	Neutralizing Ab	Glezen, J Ped 1981 98:708	
40.00 44.16	11.08 11.37	MFAT Neutralizing Ab	Roca, J Med Vir 2002 67:616 Mozambique	
210.9	63.6	Neutralizing Ab	Piedra, Vaccine 2003 21:347 Correlates of imm	
538.0	392.1	Neutralizing Ab	Eick, Ped Inf Dis J 2008 27:2 Native Americans	
1047	646	ELISA	Ochola, PLOS One 2009 4:el Infants in Kenya	

Why don't we have a RSV vaccine for children?

- Primary target population, the very young infant (0-4 months of age), has a suboptimal immune response to vaccination in part due to presence of maternal antibody
- Incomplete immunity to natural RSV infection, especially in younger patients
- Enhanced pulmonary disease/death in very young seronegative infants receiving formalin-inactivated RSV vaccine in the 1960's
- Subunit vaccines safe but not immunogenic enough
- *Live attenuated vaccines administered intranasally pose challenges to balance between immunogenicity and reactogenicity

Rationale for Maternal Immunization to Protect Infants Against RSV

- Reduced incidence of RSV disease in neonates during the first several months after birth correlates with higher concentrations of RSV-specific maternal antibody.
- Passive anti-F IgG (e.g., Palivizumab) reduces incidence of severe disease.
- Adults (mothers) are primed from previous infections and vaccine will boost antibodies.
- RSV-specific IgG transfer from mothers to neonates is efficient
- · Potential protection from breast milk antibodies
- . Success of similar strategies for Tetanus, Pertussis, Influenza

Goals of a Maternal Vaccination Program Against RSV

- · Prevent infant death and hospitalization
- · Prevent and/or reduce severity of lower respiratory illness in young infants
- · Delay onset of first RSV infection in infants
- · Reduce infection / transmission in the household and community
- · Indirect benefits
- Reduce secondary complications of RSV in infants otitis media, bacterial infections
- · Reduce antibiotics usage for the treatment of ARI
- Reduce virus-associated wheezing in the first decade of life
- · Improve maternal health and pregnancy outcomes (?)

Maternal Effects of RSV Infection during Pregnancy

Wheeler, et al. Em Infect Dis, Nov 2015 – Duke – Winter 2014					
	Case 1	Case 2	Case 3		
Age, GA at Dx	26 yr / 33 wk G1	27 yr / 34 wk G2P0	21 yr / 32 wk G1		
Infection	RSV	RSV and H1N1	RSV and GAStrep		
Diagnostic tool	PCR - BAL	PCR – NP aspirate	PCR – NP aspirate		
Disease	Bronchitis Pneumonia-VAP	Pneumonia	Pharyngitis		
Complications	Mechanical Vent 6 d C-section delivery at 34 weeks b/c LRTI. Hospitalization 14 d	Preterm labor and delivery at 34 weeks Mechanical Vent 1 d	None Outpatient treatment Delivery at 39 weeks		
Symptoms	5 d malaise, cough, wheezing,1 d fever	5 d cough, congestion 3 d fever, chills	3 d sore throat, congestion, fever		
Treatment	Broad Atbx	Broad Atbx, steroids	Penicillin		
Underlying cond.	Asthma Smoker	Asthma Smoker	Mild aortic coarctation Cognitive delay		
Exposures	Young child URI	-			

RSV infection in pregnancy: Clinical presentation and birth outcomes in Nepal. - Chu et al. PLOS one March 2016

- Prospective, randomized trial of influenza immunization in pregnancy in rural Nepal, 2011-2014
- Enrollment and immunization in 2nd trimester (~ 17 weeks of gestation)
- Weekly home-based surveillance for febrile respiratory illness in mothers from enrollment until 180 days post-partum
- · Mid nasal swabs during illness tested for RSV by PCR
- Maternal illness = Fever (> 38°C) plus at least one of cough, myalgia, sore throat, rhinorrhea
- Infant illness = any of fever, cough, wheeze, difficult or rapid breathing, draining ear.

RSV infection in pregnancy: Clinical presentation at birth outcomes in Nepal.

1 1 C Pari. Crizeta: PLOS dre March 2016
Description
14 (0.4%) RSV positive febrile illness episodes in 3693 women over 3554 person-years of surveillance 3.9/1000 person-years overall 11.8/1000 person-years between September and December
7/14 (50%) women sought medical care Median 2 (total 4) days of fever, myalgia, cough, rhinorrhea, sore throat No deaths
7/14 (50%) infected during pregnancy All live births — median BW 3080 g [vs. 2790 g in women w/o RSV] 2 (29%) preterm births 34 and 36 weeks [vs. 469 (13%) in women w/o RSV]
7/14 (50%) infected post-partum RSV was detected in 4 (47%) of their infants
No difference in number of children in household, indoor cook stove or smoking between RSV pos and RSV Neg
RSV is uncommon cause of febrile respiratory illness in mothers during pregnancy and post-partum in Nepal

Burden of RSV in Pregnant Women - Mongolia

Outcome	Description
Study design	Prospective, observational, open cohort of 1260 unvaccinated pregnant women and their infants, 2013-2015 ILI and severe ARI identified by bi-weekly call Flu and RSV point of care test
Maternal Incidence rate	ILI – 174 episodes in 160 PW or 11.8/1000 person days Severe ARI – 0.1 (0.0 – 0.4)/1000 person days Among 165 ILI cases tested: - 26 (15.8%) = influenza A (1.7 [1.5·1.9]/1000 person days) - 2 (1.2%) = influenza B (0.1 [0.1-0.2]/1000 person days) - 4 (2.4%) = R\$V (0.3 (0.2 – 0.4)/1000 person days) - 2 women tested pos for both flu and R\$V from separate ILI episodes in 2014/15
Illness	Testing within 5 days of onset Mean interval to resolution 8.1 days (3-20) No deaths

RSV in Pregnant and Post-partum Women

South Africa. Madhi et al. Burden of RSV in SAHIV+/HIV- pregnant women. CID, 2018

- · 2011-2012 study of influenza vaccine efficacy in pregnant women
- 1060 and 1056 HIV Neg; 194 HIV Pos
- · Incidence of RSV illness:
- HIV Neg 1.2 4.0 per 1000 person-months
- HIV Pos: 3.4 per 1000
- Maternal RSV infection was associated with respiratory symptoms including cough (72.1%), rhinorrhea (39.5%), sore throat (37.2%), and headache (42%), but fever was absent.
- RSV infection during pregnancy was not associated with adverse pregnancy outcomes.
- · Postpartum, RSV infection in mothers was associated with concurrent infection among 51.9% of their infants and, conversely, 29.8% of mothers investigated within 7 days of their infants having an RSV illness also tested positive for RSV.

RSV In Pregnancy — PREVENT* Study Regan A, et al. RSV hospitalization in PW in four high income countries. CID May 2018

- 2010-2016 Hospitalizations for Acute Respiratory or Febrile Illness (ARFI) AND PCR testing for RSV
- Total population: 1,604,2016 pregnant women in US, Canada, Israel, Australia RESULTS
- (0.9%)15.287 > 1 ARFI related hospitalization
- Only 6% (846/13,694 unique admissions for ARFI) were tested for RSV
- 2.5 % (21) POS for RSV (range: 1.9 3.1%); positivity by year: 0 to 4% (2013-14)
- 51% pos for influenza; < 1% pos for both RSV and influenza
- 63% tests and 67% detections in the 3rd trimester of pregnancy
- 38% women had pre-existing health condition (19% was asthma) Pneumonia was more common in RSV POS vs. neg women (38% vs. 19%, P=0.046)
- 48% of RSV POS women were admitted for ≥ 3 days
- No difference in preterm, SGA, and LBW births between RSV-pos and RSV-neg women.
- Among ARFI admissions where no delivery occurred, there was association between RSV-positivity and subsequent preterm birth (RSV-pos: 29% and RSV-neg: 15%; P=0.034).

RSV Pregnancy Houston. Hause A. ARI among Pregnant Women. JID May 2018

- · Aim: Incidence and impact of RSV infection in pregnant
- · 2015-16 season (October April)
- Cross sectional cohort of pregnant women receiving routine prenatal care at private OB practice
- Enrolled when healthy or ill
- · Mid turbinate nasal swab for PCR viral diagnosis
- Symptom history and follow up for outcomes 2 weeks after enrolment if ill
- RSV identified by PCR in 10% of women, and attributed cause of ARI in 14% of women (PCR +

RSV Positive Patients

	Case 53	Case 72	Case 102	Case 111	Case 121	Case 163
Date of Enrollment	Nov. 10	Nov. 16	Nov. 25	Dec. 12	Dec. 22	Mar. 31
Maternal Age	26 years	28 years	33 years	31 years	37 years	28 years
Gestational Age	39 weeks	24 weeks	37 weeks	15 weeks	26 weeks	34 weeks
Days Post-Onset	2 days	1 day	5 days	1 day	25 days	8 days
Symptoms	Congestion Sneezing Cough	Congestion Sore throat Cough	Congestion Sore throat Cough	◆ Activity ◆ Appetite Sore throat	Fever Activity Appetite Congestion Sore throat Cough Chest pain Short of breath Wheezing	Congestion Sore Throat Cough Short of breath
Duration of Illness	11 days	7 days	18 days	9 days	30 days	34 days

RSV Vaccine Trials in the 1990-2010s

- Subunit vaccine
 - PFP with low concentration of G (PFP-1)
- Purified fusion protein (PFP-2, PFP-3) F/G/M
- F nanoparticle (phase II and III trials)
- · Live attenuated vaccine
- Cold passaged, temperature sensitive cpts 248/404
 Genetically engineered vaccines rABcp248/404ΔSH, rA2cp248/404/1030ΔSH (Medi-559, phase II trials)
- Polypeptide vaccine
- BBG2Na (aa130-230 of G protein fused to albumin binding domain of streptococcal G protein)
- Vector vaccine
- $\mathrm{bPIV3\text{-}hHN}_{\mathrm{PIV3}}\text{-}\mathrm{hF}_{\mathrm{PIV3}}\text{-}\mathrm{hF}_{\mathrm{RSV}}\ (\mathrm{Medi\text{-}534})$

^{*}Pregnancy Influenza Vaccine Effectiveness Network (CDC-Abt:)

PFP-2 Subunit RSV Vaccine in Pregnant Women

- 1999-2002, Houston
- · 35 healthy women, 30-34 wk GA

- 35 healthy women, 30-34 wk GA

 Vaccine was safe, well tolerated

 Vaccine response in mothers:

 95% with 4x-rise anti-FlgG ELISA

 95.6% placebo

 Only 10% with 4x rise in Neut Ab

 75% by WBws. 0 placebo

 Women with low antibody
 concentrations rose to higher,
 potentially protective levels (6.0 Log2).

 Efficient representant passage of IgG.

- potentially protective levels (6.0 Log2)

 Efficient transplacental passage of IgG antibodies (>100%)

 Infant antibody higher than controls up to 6 months of age

 Ab in breast milk: Anti-F IgG and IgA > placebo at 2 and 6 months

 RSV infection in 2 infants of vaccine recipients and 4 placebo recipients (culture or serology). No enhanced infant RSV disease.

 Marce, Reda, Glessen, Macroe 2003;1:3466

Serum and Breast milk IgG following RSV PFP-2 in

Phase 2 clinical trials of Investigational RSV vaccine in non-pregnant women

Beran J, et al. JID, May, 2018; GSK Inve Prepared in Chinese Hamster Ovary cell

RSF F-nanoparticle vaccine in clinical development in Pregnant Women - Phase 2 study

RSV F-nanoparticle vaccine in Pregnant Women -Phase 2 study

ed April 2018)

RSV F protein vaccine is in phase 3 trials in pregnant women

First-in class vaccine First vaccine with a specific maternal indication First near-concurrent

launch in HIC and

LMIC

http://novavax.com/presentation.show (accessed April 2018)

RSV Vaccine for Pregnant Women - Are we there yet?

- Understanding the burden of disease
- · Mothers and infants
- · High and LMIC settings
- · Diagnosis and Surveillance of RSV disease
- Safety
- Obstetric vs. vaccine associated adverse events (background rates)
- Vaccine enhanced disease upon natural infection under 2 years of age is NOT a significant consideration when vaccine is given to mother
- Efficacy + Endpoints (eg. LRI (bronchiolitis), severe LRI, hospitalization, death)
- · Immunologic correlates of protection

RSV Prevention Strategies

- Long lasting monoclonal antibody (1-2 doses per season) (Phase II-III clinical trials)
- Infant vaccination (vaccines in development / phase II-III trials)
- Vaccine for 0-6 months
 Vaccine for 6 mo 23 month olds

Implementation approach Strategies:

- Maternal
- · Infant vaccination in combination with maternal Immunization
- MOM + INFANT at 2 6 months
- MOM + Toddler at 12 24 months
- Monoclonal antibody + Infant vaccination

Perceived benefit-risk is a key consideration for the development of novel vaccines for use in pregnancy

Zika rewrites maternal immunization ethics

Ay Jon Cohen	by the National Institute of Allorgy and In- fections Discours (VIIAII); to Delbrook, Mary	virus (RSV), which kills many infants from precessin. The other immerators against
ver since the shooking realization in 1900 that the mornion sickness self-	land, the succine contains bits of 28to DNA and part is being along to 90 while in Hon-	group B empticoccus (GBS), a business. that course on often fetal words and menti-
tubblenik capel shetred links	test, Texas; Minesi, Floreite; and Punto Rico.	gitta in mountes. (Bolt efforts are receiving,
in bables, doctors have been extremely warry of global any modicine to a peop-	It will not be tented in a placebo-controlled study that will add from ZBu-offerned Latin	support from the 3-year-old material legion- nimities program at the BEE & Michala Gase
most woman-and testing experimental	American negative, siming to enroll more	Fourskitter, which coincidentally last week
drugs has raised over more uncorns. But the moret discovers that exposure to Zilo-	than 2400 men and women between the ages of 15 and 35. Program women are excluded	released a report highlighting the challenges in negationing the sufery of these vaccious in
virus in oters can cause severe brain dam-	from both trish-appropriates, agrees	low and middle incree countries)
age and other problems in riskfore triggered on international effort to develop a varcius	Erabiner-and not just for outry reason. DNA vaccines trainally do not provoke	The RIV and GES vandom attempt to ad- dron a bidinated constraint in newborne
for prognant women. A new report written	strong income responses, and this one re-	Their impatture income noters do not

Why pursue a maternal RSV vaccine?

ANISA – Aetiology of Neonatal Infection in South Asia; PERCH – Pneumonia Etiology Research for Child Health; RSV GOLD – Respiratory Syncytial Virus GlObal. Database; CHAMPS – Child Health and Mortality Propagation Synapiliance Materials.

Schellena MM et al. Laucet Shib Health 2017; Shi T et al. Laucet 2017; Shipublished data, ANEA; Unpublished data, PERCH; Unpublished data, Harch Nat

Comparison of Deaths from MI-Preventable Diseases

According to GBD 2016 estimates, LISM is 5 million globally, including 2.1 million deaths in recorduse. Amongst thesia, a total of 895.595 deaths were due to bore respiratory treat refection (LISM) and recordus appear.

• It ill remarks the Address classe of million (schelbur LIS 692.25).

• Necentatia sepale is carlied as the 8° (from 10° list) year/cause of duestin (242.952).

	OUTCOMES PER YEAR		
	Stillbirths	Neonatal or other deaths related to maternal infection or non-immunity	Neonatal or infant cases
Group B Streptococcus	57,000 (12,000-103,000)	90,000° (36,000-166,000)	319,000 (118,000-417,000)
Respiratory Syncytial Virus	NA.	86,000 ^b (88,000-109,000)	1.4 million
Syphilis	200,000	62,000°	102,000
Tetanus	NA.	34,000 (18,000- 84,000)	1,996 ^{cd}

"Young infants (0-86 days); " Overall oil months (hospital + community, in-hospital alone, 27,000; " Neonates (0-27 days); " WHO Joint Reporting Form, 2016; NA not available

Current and pipeline vaccines for pregnant women

Prospects for an RSV Vaccine for Pregnant Women to Protect Infants Worldwide

- Maternal immunization is an accepted strategy for the prevention of maternal and infant disease (e.g Tetanus, Influenza, Pertussis)
- Active development of RSV vaccines for pregnant women by industry
- Support from regulatory agencies (FDA, EMA, others) to establish path for licensure of first vaccine indicated for pregnant women
- Support from funders (BMGF, private, others) to study RSV vaccines in pregnancy, including the burden of disease in pregnant women and infants, safety and efficacy, as well as implementation strategies

Thank you

