

Modelling the decline and potential elimination of endemic hepatitis A in Australia

Duleepa Jayasundara a*, Ben B Hui b, David G Regan b, Anita E Heywood a, C Raina MacIntyre b, James G Wood a

- ^a School of Public Health and Community Medicine, UNSW Sydney, NSW 2052, Australia.
- ^b The Kirby Institute, UNSW Sydney, NSW 2052, Australia.

Introduction

- Hepatitis A infection rates have declined in most countries through a combination of prevention
- Australian hepatitis A epidemiology transitioned from medium to low endemicity over 1950 1990.
- At present very low endemicity/risk high opportunistic vaccination rates.
- Outbreaks in MSM population / Sporadic point-sourced outbreaks (food contamination)
- · High percentage of cases are travel related NNDSS surveillance reports

Methods

- Age-structured, SIR type, deterministic hepatitis A transmission model incorporating demographic changes.

- Calibrated using:

 Cross-sectional seroprevalence data and

 NNDSS notification data

 assuming a exponentially decaying probability of infection per contact over time.

- Evaluated the trends in the basic (R_0) and effective (R_{eff}) reproduction numbers.
- Projected incidence trends in the presence of extrapolated vaccination trends until 2061 in the general population.
- Tested whether R_{eff} can be sustained below the endemic threshold ($R_{eff} < 1$).

Results

Conclusions

- · Projections to 2061 in the general population:
- $R_{eff} < 1$.
- $R_0 > 1$.
- · Continued low Incidence.
- Return to endemic transmission is only possible under a combination of highly unrealistic scenarios.
- There is potential for local elimination of hepatitis A given that the elimination criteria are defined and met in high risk groups.

